从古到今,无论是科技、数学或人文科学,内容愈来愈丰富,分支也愈来愈多。考其原因,一方面是由于工具愈来愈多,能够发现不同现象的能力也比以前大得多;一方面全世界的人口大量增长,不同种族、不同宗教、不同习俗的人在互相交流后,不同观点的学问得到融会贯通,迸出火花,从而产生新的学问。
数学之为学,有其独特之处。它本身是寻求自然界真相的一门科学,但数学家也如文学家般天马行空,凭爱好而创作,故此数学可谓是人文科学和自然科学的桥梁。
数学家研究大自然所提供的一切素材,寻找它们共同的规律,并用数学的方法表达出来。这里所说的大自然比一般人所了解的来得广泛。
我们认为数字、几何图形和各种有意义的规律都是自然界的一部分。我们希望用简洁的数学语言将这些自然现象的本质表现出来。
数学是一门公理化的科学,所有命题必须由三段论证的逻辑方法推导出来,但这只是数学的形式,而不是数学的精髓。大部分数学着作枯燥乏味,而有些却令人叹为观止,其中的区别在哪里呢?
大略言之,数学家以其对大自然感受的深刻程度,来决定研究的方向。这种感受既有其客观性,也有其主观性,后者则取决于个人的气质。气质与文化修养有关,无论是选择悬而未决的难题,或者创造新的方向,文化修养皆起着关键性的作用。文化修养是以数学的功夫为基础,自然科学为辅,但是深厚的人文知识也极为要紧。因为人文知识也致力于描述心灵对大自然的感受,所以司马迁写《史记》除了“通古今之变”外,也要“究天人之际”。
历代的大数学家如阿基米德、牛顿,莫不以自然为宗,见物象而思数学之所出,即有微积分的创作。费马和欧拉对变分法的开创性发明也是由于探索自然界的现象而引起的。
近代几何学的创始人高斯认为几何和物理不可分。他说:“我越来越确信几何的必然性无法被验证,至少现在无法被人类或为了人类而验证,我们或许能在未来领悟到那无法知晓的空间的本质。我们无法把几何和纯粹是先验的算术归为一类,几何和力学却不可分割。”
20世纪几何学的发展,则因物理学上重要的突破而屡次改变其航道。当狄拉克把狭义相对论用到量子化的电子运动理论时,发现了狄拉克方程,以后的发展连狄拉克本人也叹为观止,认为他的方程比他的想象来得美妙,这个方程在近代几何的发展中起着关键性的作用。
我们对旋子的描述缺乏直观的几何感觉,但它出于自然,自然界赋予几何的威力可说是无微不至的。
广义相对论提出了场方程,它的几何结构成为几何学家梦寐以求的对象,因为它能赋予空间一个调和而完美的结构。我研究这种几何结构垂三十年,时而迷惘,时而兴奋,自觉同《诗经》《楚辞》的作者,或晋朝的陶渊明一样,与大自然浑为一体,自得其趣。
捕捉大自然的真和美,实远胜于一切人为的造作,正如《文心雕龙》说的:“云霞雕色,有踰画工之妙。草木贲华,无待锦匠之奇。夫岂外饰,盖自然耳。”
在空间上是否存在满足引力场方程的几何结构是一个极为重要的物理问题,它也逐渐地变成几何中伟大的问题。尽管其他几何学家都不相信它存在,我却锲而不舍,不分昼夜地去研究它,就如屈原所说:
“亦余心之所善兮,虽九死其犹未悔。”
我花了五年工夫,终于找到了具有超对称的引力场结构,并将它创造成数学上的重要工具。
当时的心境,可以用以下两句来描述:
“落花人独立,微雨燕双飞。”
数学的文采,表现于简洁,寥寥数语,便能道出不同现象的法则,甚至在自然界中发挥作用,这就是数学优雅美丽的地方。
我的老师陈省身先生创作的陈氏类,就文采斐然,令人赞叹。它在扭曲的空间中找到简洁的不变量,在现象界中成为物理学界求量子化的主要工具,可谓是描述大自然美丽的诗篇,直如陶渊明“采菊东篱下,悠然见南山”的意境。
从欧氏几何的公理化,到笛卡尔创立的解析几何,到牛顿、莱布尼茨的微积分,到高斯、黎曼创立的内蕴几何,一直到与物理学水乳相融的近代几何,都以简洁而富于变化为宗,其文采绝不逊色于任何一个文学创作。它们轫生的时代与文艺兴起的时代相同,绝对不是巧合。
数学家在开创新的数学想法的时候,可以看到高雅的文采和崭新的风格。例如欧几里得证明存在无穷多个素数,开创反证法的先河。高斯研究十七边形的对称群,使伽罗瓦群成为数论的骨干。这些研究异军突起,论断华茂,使人想起五言诗的始祖苏李唱和诗与词的始祖李太白的《忆秦娥》。